Partie A

Ι

1.
$$f(x) = \frac{3}{2}x + \frac{1}{x+1} - 1$$

- La dérivée $x \mapsto \frac{3}{2}x$ est la fonction $x \mapsto \frac{3}{2}$ sur [0;1].
- La fonction $x \mapsto \frac{1}{x+1}$ est la forme $\frac{1}{v}$ qui a pour dérivée $-\frac{v'}{v^2}$. Ainsi la dérivée fonction $x \mapsto \frac{1}{x+1}$ est la fonction $\frac{1}{(x+1)^2}$ sur [0;1].
- La dérivée $x \mapsto -1$ est la fonction $x \mapsto 0$ sur [0; 1].

On en déduit que :

$$f'(x) = \frac{3}{2} + \frac{-1}{(x+1)^2} + 0$$

$$= \frac{3}{2} - \frac{1}{(x+1)^2}$$

$$= \frac{3}{2} \times \frac{(x+1)^2}{(x+1)^2} - \frac{2}{2} \times \frac{1}{(x+1)^2}$$

$$= \frac{3(x+1)^2}{2(x+1)^2} - \frac{2 \times 1}{2(x+1)^2}$$

$$= \frac{3(x+1)^2}{2(x+1)^2} - \frac{2}{2(x+1)^2}$$

$$= \frac{3(x+1)^2 - 2}{2(x+1)^2}$$

$$= \frac{3(x^2 + 2x + 1) - 2}{2(x+1)^2}$$

$$= \frac{3x^2 + 6x + 3 - 2}{2(x+1)^2}$$

$$= \frac{3x^2 + 6x + 1}{2(x+1)^2}$$

 $3x^2 + 6x + 1 > 0$ pour tout $x \in [0; 1]$ et $2(x+1)^2 > 0$ pour tout $x \in [0; 1]$.

Par conséquent f'(x) > 0 pour tout $x \in [0; 1]$.

Donc f est strictement croissante sur [0;1].

$$f(0) = \frac{3}{2} \times 0 + \frac{1}{0+1} - 1 = 0 + 1 - 1 = 0$$

$$f(1) = \frac{3}{2} \times 1 + \frac{1}{1+1} - 1 = \frac{3}{2} + \frac{1}{2} - 1 = 2 - 1 = 1$$

x	0 1
f'(x)	+
f(x)	0

2.

$$x - f(x) = x - \left(\frac{3}{2}x + \frac{1}{x+1} - 1\right)$$

$$= x - \frac{3}{2}x - \frac{1}{x+1} + 1$$

$$= -\frac{1}{2}x - \frac{1}{x+1} + 1$$

$$= -\frac{1}{2}x \times \frac{x+1}{x+1} - \frac{2}{2} \times \frac{1}{x+1} + 1 \times \frac{2(x+1)}{2(x+1)}$$

$$= -x\frac{(x+1)}{2(x+1)} - \frac{2}{2(x+1)} + \frac{2(x+1)}{2(x+1)}$$

$$= \frac{-x(x+1) - 2 + 2(x+1)}{2(x+1)}$$

$$= \frac{-x^2 - x - 2 + 2x + 2}{2(x+1)}$$

$$= \frac{-x^2 + x}{2(x+1)}$$

$$= \frac{x(-x+1)}{2(x+1)}$$

- $x \ge 0 \text{ sur } [0; 1].$
- $-x + 1 \ge 0 \text{ sur } [0; 1].$
- 2(x+1) > 0 sur [0;1].

Comme $x(-x+1) \ge 0$ et que 2(x+1) > 0 sur [0;1], alors $\frac{-x(1-x)}{2(x+1)} \ge 0$ sur [0;1].

On en déduit que pour tout $x \in [0; 1]$:

$$x - f(x) \ge 0$$

 $x \ge f(x)$
 $f(x) \le x$

- 3. f est définie sur [0; 1].
 - f est strictement croissante sur [0;1].
 - $f(x) \leqslant x \text{ sur } [0; 1].$
 - f(0) = 0 et f(1) = 1.

On en déduit que la courbe représentative de la fonction f est une courbe de Lorenz.

II

1. a)
$$g(x) = e^x - (e-2)x - 1 = e^x - xe + 2x - 1$$

Ainsi $g'(x) = e^x - e + 2$

$$g'(x) > 0$$

$$e^{x} - e + 2 > 0$$

$$e^{x} > e - 2$$

$$ln(e^{x}) > ln(e - 2)$$

$$x > ln(e - 2)$$

$$ln(e-2) \approx -0.33$$

On en déduit le tableau de signe de g'(x) sur \mathbb{R} .

x	$-\infty$	ln(e-2)	$+\infty$
g'(x)		- 0 +	

Par conséquent,

x	0 1
g'(x)	+
g(x)	0

b)
$$g(0) = e^0 - (e - 2) \times 0 - 1 = 1 - 0 + 1 = 0$$

 $g(1) = e^1 - (e - 2) \times 1 - 1 = e - e + 2 - 1 = 1$

2. a)

x	0	ln(e-1)			1
h'(x)		+	0	_	
h(x)	0 —	$\longrightarrow h$	(ln(e-1)	1))	→ 0

On rappelle que $h(x) = -e^x + (e-1)x + 1$.

- $h(0) = -e^0 + (e-1) \times 0 + 1 = -1 + 0 + 1 = 0$.
- $h(1) = -e^1 + (e-1) \times 1 + 1 = -e + e 1 + 1 = 0.$
- $h(ln(e-1)) = -e^{ln(e-1)} + (e-1) \times ln(e-1) + 1 = -e+1 + eln(e-1) ln(e-1) + 1 = eln(e-1) ln(e-1) e+2 \approx 0,2$

b)

$$x - g(x) = x - (e^{x} - (e - 2)x - 1)$$

$$= x - e^{x} + (e - 2)x + 1$$

$$= -e^{x} + x((e - 2) + 1) + 1$$

$$= -e^{x} + x(e - 2 + 1) + 1$$

$$= -e^{x} + x(e - 1) + 1$$

$$= -e^{x} + (e - 1)x + 1$$

$$= h(x)$$

D'après la question II.2.a, on observe sur le tableau de variations que $h(x) \ge 0$ sur [0; 1]. Ainsi pour tout $x \in [0; 1]$:

$$h(x) \ge 0$$

$$x - g(x) \ge 0$$

$$x \ge g(x)$$

$$g(x) \le x$$

- 3. D'après les réponses aux questions précédentes :
 - g est définie sur [0;1].

- g est strictement croissante sur [0;1].
- $g(x) \le x \text{ sur } [0; 1].$
- g(0) = 0 et g(1) = 1.

On en déduit que la courbe représentative de la fonction g est une courbe de Lorenz.

Partie B

1. On rappelle que $g(x) = e^x - (e-2)x - 1$ $g(0,5) = e^{0,5} - (e-2) \times 0, 5 - 1 = e^{0,5} - 0, 5e + 2 \times 0, 5 - 1 = e^{0,5} - 0, 5e + 1 - 1 = e^{0,5} - 0, 5e \approx 0, 29.$ 50% des exploitations les plus petites représentent 29% de la superficie des exploitations du pays G.

2. a)

$$\mathcal{A} = \int_0^1 x - g(x) dx$$

$$= \int_0^1 h(x) dx$$

$$= \int_0^1 -e^x + (e - 1)x + 1 dx$$

$$= \left[-e^x + (e - 1) \times \frac{x^2}{2} + x \right]_0^1$$

$$= \left(-e^1 + (e - 1) \times \frac{1^2}{2} + 1 \right) - \left(-e^0 + (e - 1) \times \frac{0^2}{2} + 0 \right)$$

$$= \left(-e + \frac{1}{2}(e - 1) + 1 \right) - (-1 + 0 + 0)$$

$$= -e + \frac{1}{2}e - \frac{1}{2} + 1 + 1$$

$$= -\frac{1}{2}e + \frac{3}{2}$$

b) $\mathscr{A}=-\frac{1}{2}e+\frac{3}{2}\approx0,14$ unités d'aire. Ainsi son coefficient de Gini $\gamma_G=2\times\mathscr{A}\approx0,28.$ 3.

$$\gamma_F = 2 \int_0^1 x - f(x) \, dx$$

$$= 2 \int_0^1 x - \left(\frac{3}{2}x + \frac{1}{x+1} - 1\right) \, dx$$

$$= 2 \int_0^1 x - \frac{3}{2}x - \frac{1}{x+1} + 1 \, dx$$

$$= 2 \int_0^1 -\frac{1}{2}x - \frac{1}{x+1} + 1 \, dx$$

$$= 2 \left[-\frac{1}{2} \times \frac{x^2}{2} - \ln(x+1) + x \right]_0^1$$

$$= 2 \left[-\frac{1}{4}x^2 - \ln(x+1) + x \right]_0^1$$

$$= 2 \left(\left(-\frac{1}{4}1^2 - \ln(1+1) + 1 \right) - \left(-\frac{1}{4}0^2 - \ln(0+1) + 0 \right) \right)$$

$$= 2 \left(\left(-\frac{1}{4} - \ln(2) + 1 \right) - (-0 - \ln(1) + 0) \right)$$

$$= 2 \left(\left(\frac{3}{4} - \ln(2) \right) - (-0 - 0 + 0) \right)$$

$$= 2 \left(\frac{3}{4} - \ln(2) \right)$$

$$= 2 \times \frac{3}{4} - 2\ln(2)$$

$$= \frac{3}{2} - 2\ln(2)$$

$$\approx 0.22$$

- 4. a) Plus le coefficient de Gini est petit, plus la répartition des exploitations est égalitaire. Donc la répartition est la plus égalitaire pour le pays F.
 - b) Par définition, $\gamma_F = 2\mathscr{A}_F$ et $\gamma_G = 2\mathscr{A}_F$. Daprès les graphiques ci-dessous, on remarque que $\mathscr{A}_G < \mathscr{A}_G$. Par conséquent, $\gamma_F < \gamma_G$. Ce qui confirme que la répartition est la plus égalitaire pour le pays F.



